
Fault-aware scheduling for Bag-of-Tasks
applications on Desktop Grids

Cosimo Anglano 1, John Brevik 2, Massimo Canonico 1, Dan Nurmi 2, Rich Wolski 2

1 Dipartimento di Informatica, Universita’ del Piemonte Orientale (Italy),
email:{cosimo.anglano,massimo.canonico}@unipmn.it

2 Department of Computer Science, University of California, Santa Barbara,
email:{jbrevik,nurmi,rich}@cs.ucsb.edu

Abstract— Desktop Grids have proved to be a suitable platform
for the execution of Bag-of-Tasks applications but, being char-
acterized by a high resource volatility, require the availability
of scheduling techniques able to effectively deal with resource
failures and/or unplanned periods of unavailability. In this paper
we present a set of fault-aware scheduling policies that, rather
than just tolerating faults as done by traditional fault-tolerant
schedulers, exploit the information concerning resource avail-
ability to improve application performance. The performance of
these strategies have been compared via simulation with those
attained by traditional fault-tolerant schedulers. Our results,
obtained by consider a set of realistic scenarios modeled after
real Desktop Grids, show that our approach results in better
application performance and resource utilization.

I. INTRODUCTION

Grid Computing can be defined as the coordinated resource
sharing and problem solving in dynamic, multi-enterprise
collaborations [1], and typically involves using many resources
(computer, data, I/O, instruments, etc.) to solve a single,
large problem that could not be solved on any one resource.
Recently, the exploding popularity of the Internet has created
a new much large scale opportunity for Grid computing. As a
matter of fact, millions of desktop PCs, whose idle cycles can
be exploited to run Grid applications, are connected to wide-
area networks both in the enterprise and in the home. These
new platforms for high throughput applications are called
Desktop Grids [2]. The inherent wide distribution, heterogene-
ity, and dynamism of Desktop Grids makes them better suited
to the execution of loosely-coupled parallel applications rather
than tightly-coupled ones. Bag-of-Tasks applications [3](BoT)
(parallel applications whose tasks are completely independent
from one another) have been shown to be particularly able to
exploit the computing power provided by Desktop Grids [4]
and, despite their simplicity, are used in a variety of domains,
such as parameter sweeps, simulations, fractal calculations,
computational biology, and computer imaging. In order to take
advantage of Desktop Grid environments, suitable scheduling
strategies, tailored to BoT applications, have been proposed
in the literature. These algorithms can be broadly classified
into knowledge-based [5], [6], [7], where the scheduler relies
to variable extents on information concerning the application
and/or the resources of the Grid, and knowledge-free [4], that
do not require such information. Unfortunately, all these algo-

rithms are based on the unrealistic assumption that resources
are always available (i.e., they never crash or they are never
taken off-line). However, as shown in [8], [9], Desktop Grid
resources are characterized by a very high resource volatility,
since resources can be disconnected from the Grid at any time
without any advance notice. Consequently, these scheduling
algorithms yield suboptimal performance when applied to
realistic scenarios where failures actually occur more often
than not.

In order to cope with resource failures, recent work has
focused on fault-tolerant scheduling [10], [11], [12], where the
scheduler relies on fault-handling mechanisms (such as task
replication and checkpoint-and-restart) to deal with the occur-
rence of resource failures or unavailability. These schedulers,
however, being knowledge-free, do not use any information
concerning the tasks and the resources, with the consequence
that their resource usage is suboptimal.

In this paper we propose an alternative approach to BoT
scheduling in Desktop Grids (named fault-aware scheduling)
that, instead of just tolerating resource failures, tries to avoid
them as much as possible by jointly exploiting the fault-
handling mechanisms, and the knowledge of the effective
computing power delivered by resources [13], [14] and the
distributions of their fault times [15] (i.e. the time elapsing
between two consecutive faults), to improve scheduling per-
formance. We show how this information can be exploited to
improve both task selection (the choice of the next task to be
executed) and machine selection (the choice of the machine
on which it will be executed) with respect to fault-tolerant
schedulers. More specifically, we propose two task selection
and four machine selection policies that, when combined, give
rise to 8 scheduling policies. In order to show the effectiveness
of our approach, we have conducted a thorough simulation
study that has shown that our strategies outperform fault-
tolerant schedulers for a variety of operational scenarios.

The rest of the paper is organized as follows. In Section II
we place our work in the context of the related literature.
In Section III we discuss our fault-aware scheduling policies,
while in Section IV we present the results obtained in our
experiments. Finally, Section V concludes the paper and
outlines future research work.



II. RELATED WORK

Existing algorithms for scheduling BoT applications on
Desktop Grids can be classified along two dimensions, namely
(a) their reliance on task/resource information (i.e., we have
knowledge-free and knowledge-aware strategies), and (b) the
way they handle resource failures (i.e., we have fault-agnostic
and fault-aware strategies). Although this classification gives
rise to four different combinations, the literature provides
examples belonging to only three of them. Knowledge-based,
fault-agnostic schedulers rely on resource/task information,
but are based on the implicit assumption that resources never
fail. Schedulers in this class assume the knowledge of the
execution time of individual tasks, and exploit various type
of static [2], [7] or dynamic [5], [6] resource information to
perform machine selection. Our scheduling strategies also use
dynamic resource information, but unlike the previous ones are
able to efficiently handle resource failures or unavailabilities.

Knowledge-free, fault-agnostic schedulers [4] make blind
task and machine selections. Knowledge-free, fault-tolerant
schedulers [7], [10], [11], [12] improve over their knowledge-
free counterparts by using task replication to reduce the effects
of poor task assignments, and automatic restart (possibly
coupled with checkpointing) to deal with resource failures.
These strategies are able to obtain reasonable performance
even in face of failures, but waste a great deal of CPU cycles
to execute needless task replicas. Our strategies also exploit
task replication and checkpoint-and-restart, but their usage of
task and resource information allows them to greatly reduce
the amount of wasted CPU cycles, that are instead used to
improve application performance.

III. FAULT-AWARE SCHEDULING

In this section we describe our fault-aware scheduling
policies, that are obtained by combining a task selection policy
with a machine selection policy. We start by describing first
the system model on which our policies are based, and we then
proceed with the presentation of the various task selection and
machine selection policies.

A. System model
In this paper, we consider Desktop Grids composed of

a set of heterogeneous machines connected by a generic
communication network. Each machine M is characterized
by its nominal computing power P (M), a real number whose
value is directly proportional to its speed (i.e., a machine with
P=2 is twice faster than a machine with P=1). We assume
that the machines may also run local jobs (i.e., job started
by their legitimate owners), so that at each time instant t
it delivers to Grid applications an effective computing power
EffPwr(M, t) defined as:

EffPwr(M, t) = P (M) ∗ AvailCPU(M, t) (1)

where AvailCPU(M, t) is a real value that represents the
fraction of M’s CPU capacity available to Grid processes (i.e.,
unused by local jobs) at time t.

while (there are unfinished task) do
t=SelectTask();
r=SelectMachine();
assign(t,r);
ReplicateTasks();

end while
Fig. 1. The scheduling algorithm

Furthermore, we assume that resources can become unavail-
able at unpredictable times because of hardware/network prob-
lems or simply because they are taken out from the Desktop
Grid (we consider both events as resource failure). To cope
with failures, we assume that the Desktop Grid encompasses
one or more Checkpoint Servers, in charge of storing and
providing access to checkpoints. We assume that some form of
virtual machine is used to run Desktop Grid applications (e.g.
as done in Entropia [16] or in United Devices [17]), so that
a given checkpoint can be used on any machine, and that the
Checkpoint Server stores only the checkpoint corresponding
to the replica that is the closest one to complete its task. The
residual execution time of to a task checkpoint, that is required
to decide whether a given checkpoint must be stored or not by
the Checkpoint Server, is computed as discussed in Section III-
C.

B. Fault-aware scheduling policies
As mentioned before, the core of our scheduling policies

are the task and machine selection policies, as schematically
shown in the pseudo-code of Fig. 1.

The scheduler works by repeatedly selecting a task to execute
(by means of function SelectTask()) and the machine on which
it will be executed (by means of function SelectMachine(),
until all the tasks of the bag have been completed. When a
task fails (because of the crash or the unavailability of the
machine it is using), it inserted again in the list of unfinished
tasks. If all unfinished tasks are running, and there are idle
resources, function ReplicateTasks() starts the execution of
tasks replicas, in such a way that each task has a number
of replicas lower than or equal to a pre-defined replication
threshold (more details on the replication policy can be found
in [12]). In this paper we consider a static replication policy,
where the number of running replicas per task never exceeds
the replication threshold. Dynamic replication policies, where
the above threshold may be exceeded, are also possible, but
we dot not consider them here since we have experimentally
observed that they result in negligible performance gains,
while they require a much more complex replica management.

In this paper we propose two task selection and four
machine selection policies, whose combinations give rise to
the 8 scheduling policies listed in Fig. 2 (where rows and
columns correspond to task selection and machine selection
policies, respectively), obtained by combining two task se-
lection policies with four machine selection policies that are
described in the next two subsections. These selection policies



Blind EffCPUKnown FTDKnown EffCPU+FDTKnown
SRET SRET-Blind SRET-EffCPU SRET-FTD SRET-EffCPU-FTD
LRET LRET-Blind LRET-EffCPU LRET-FTD LRET-EffCPU-FTD

Fig. 2. Scheduling policies

are based on the knowledge of the execution time of each task
Ti on a reference machine with nominal computing power
P = 1, and on the availability of estimates of the effective
computing power delivered by resources, that can be computed
as discussed in [14], and of their fault time distributions, that
can be performed as discussed in [15], [9].

C. Task selection policies
The task selection policies we propose are based on the

notion of the residual execution time of tasks, i.e. the time
needed to complete a task starting from its last saved check-
point (or from its beginning if a checkpoint does not exist). A
checkpoint taken after executing a task for an interval lasting
C time units on machine M decreases its residual execution
time by C ·

∫ C

0
EffPwr(M, t)dt, where the integral gives the

average effective computing power delivered by the machine
during that interval. For example, if a task executes for 25
time units and the average delivered computing power in that
interval has been 3, the residual execution time is reduced
by 25 · 3 = 75 time units on the reference machine. This
information is stored with the checkpoint, and used by the
Checkpoint Server to decide when a given checkpoint should
replace the saved one or not.

In this paper we consider two task selection policies that
exploit the residual execution time of tasks, namely:

• Shortest Residual Execution Time (SRET): The scheduler
chooses the task with the shortest residual execution
time whose number of running replicas is lower than
the replication threshold. Intuitively, SRET attempts to
complete the shortest tasks first, in order to have enough
free machines to execute replicas of the longest tasks;

• Longest Residual Execution Time (LRET): The scheduler
selects the task with longest residual execution time
whose number of running replicas is lower than the
replication threshold. Intuitively, LRET is a form of
critical path scheduling. As a matter of fact, a Bag-of-
Tasks can be seen as a very simple DAG, where all the
tasks are spawned from an initial dummy node, and there
is a dummy final node that must wait the completion of
all the tasks in a Bag. By giving precedence to longest
tasks, LRET seeks to complete the tasks in the critical
path as soon as possible, in the attempt to reduce the
makespan a BoT.

D. Machine selection policies
The machine selection policies proposed in this paper are

based either on estimations of the effective CPU power, of the
fault time distribution of machines, or both. More specifically,
we propose the following three machine selection policies (in

addition to the trivial policy – named Blind – that performs
machine selection in a blind way):

• EffCPUKnown: This policy chooses the machine Mj

with the highest predicted effective CPU power
PredCPU(Mj), in the attempt to minimize the execu-
tion time of the selected task. EffCPUKnown assumes
that PredCPU(Mj) represent the average CPU powered
delivered by Mj during the execution of the task;

• FTDKnown: This policy uses estimates of the fault-time
distribution (FTD) of individual machines, and uses them
to select the machine with the longest residual life time,
that is the machine whose next fault is the farthest ahead
in time. The rationale behind FTDKnown is to avoid (or
to delay as much as possible) the occurrence of a machine
failure during the execution of a task, so that the number
of task rollbacks are minimized. Delaying the occurrence
of a fault also increases the probability of updating the
checkpoint relative to the running task, thus reducing its
residual execution time;

• EffCPU+FTDKnown: This policy exploits both types
of information as follows. First, the execution time
ET (Ti, Mj) of the chosen task Ti is computed
for each candidate machine Mj as ET (Ti, Mj) =
Ti/PredCPU(Mj). Then, for each candidate machine
the probability P (F, Ti, Mj) = P{Fault T ime ≥
ET (Ti, Mj)} that its next fault occurs after Ti terminates
its execution is computed, and only those machines such
that P (F, Ti, Mj) ≥ 0.95 are selected. Finally, if more
than one machine has been selected, or if no machine
satisfies the above inequality, the one with the highest
EffPwr() value is chosen.

IV. PERFORMANCE ANALYSIS

In order to assess the performance of the proposed schedul-
ing policies, we performed an exhaustive simulation study
carried out by means a discrete-event simulator, in which we
considered a large set of operational scenarios and compared
all our strategies among them and also with WQR-FT [12],
a knowledge-free fault-tolerant scheduler that, at the best of
our knowledge, provides the best performance w.r.t. other
alternative schedulers in the same family. In order to obtain
realistic results, in our simulations we considered a set of
realistic scenarios and workloads, obtained from the analysis
of measurement traces taken on a real Desktop Grid. Our
comparison has been carried out by using as metrics the
average BoT completion time and the relative CPU wasted
time. The BoT completion time is defined as the time elapsing
between the submission of a bag and the termination of all its
tasks, while the relative CPU wasted time is defined as the



ratio of the total CPU time wasted by replicas and the total
amount of used CPU time, that is:

RelativeWasted =
WastedT ime

WastedT ime + UsefulT ime

The CPU time used to run a replica is considered wasted if
the replica fails without completing the task or producing a
checkpoint better than the stored one (i.e., that reduces the
residual execution time of the corresponding task). In order
to explain whether the CPU time used to run a replica is
considered to be wasted or not, let us consider the scenarios
depicted in Fig. 3, where we assume to have four running
replicas (that is, R0, R1, R2 and R3) of a given task. Consider
first the case (Fig. 3(a)) in which all these replicas terminate
their execution (either successfully or not) before a checkpoint
is taken. In particular, assume that R1 and R3 fail (the ”x”
symbol denotes a failure), that R2 completes the task (the ”o”
symbol denotes task completion) and, consequently, that R0

is killed (the ”k” symbol denotes task killed). In this case, we
consider as useful only the CPU time used to run R2 (denoted
as CT2), since no checkpoint is produced by the other replicas.
Therefore, the relative CPU wasted time is given by

RelativeWasted =
CT0 + CT1 + CT3

CT0 + CT1 + CT2 + CT3

Consider now a different scenario (Fig. 3(b)), where initially
we have a single task replica running (R0), that takes its first
checkpoint at time t1. After the checkpoint has been saved
on the Checkpoint Server, a machine becomes available, so
a new replica R1 of the same task is created and, since a
checkpoint is available, its computation is started from the
checkpoint. Then, after some time, R0 fails, but the task is
eventually completed by R1. In this case, the CPU wasted
time is only the time elapsed between the checkpoint saving
and the replica failure (that is, CT1), since both CT0 and CT2

have contributed to the task completion. Therefore, the relative
CPU wasted time is

RelativeWasted =
CT1

CT0 + CT1 + CT2

A. Simulated scenarios
Our simulation study considered the two different Desktop

Grid platforms, and the variety of workloads described in this
section.

1) Simulated platforms: In our study, we considered two
distinct simulation scenarios, corresponding respectively to an
enterprise and to a public-resource computing Desktop Grid.
The enterprise Grid represents scenarios in which machines are
relatively homogeneous, and faults are relatively infrequent,
while the public-resource one represents platforms where
resources are scattered across many independent users, so are
characterized by a large heterogeneity and frequent failures.

For the enterprise Desktop Grid we considered the 85
machines of the Computer Science Instructional Laboratory
(CSIL) of the University of California, Santa Barbara (UCSB).
These machines run the Linux operating system, are equipped

with either an Intel Pentium or XEON processor with dif-
ferent clock rates (from 2.2GHz to 3GHz), and memory
capacities (from 512MB to 1GB). The nominal computing
powers of these machines have been computed by running the
nbench [18] benchmark on each of them, and by normalizing
them to the lowest measured value. These process resulted in
3 different values for the nominal power of machines, namely
{1, 1.125, 1.4375}, that are uniformly distributed across the
various machines.

As stated by Eq. 1, the effective computing power deliv-
ered by each machine at any time instant t depends also
on AvailCPU(t), that is a random variables whose values
change over time. In our simulations, these changes have been
described by the Markov model depicted in Fig. 4, where each
state corresponds to a CPU load value and the label Mxy

on the arcs corresponds to the probability of moving from
state X to state Y. The parameters of this model have been

A B

C

MAB

MBA

MAC
MCA

MCB

MBC

Fig. 4. Markov model describing AvailCPU(t)

computed by using the data collected, in a 6 months period
spanning from January to July 2004, by the CPU load sensor
of the Network Weather Service (NWS) [19] monitoring and
forecasting system. In particular, as shown in Fig. 4, three
different states – corresponding to the availability of 100% (A),
50% (B), and 33% (C) of CPU power – have been obtained
from the analysis of the above data. The transition probabilities
shown in Fig. 4 have been also estimated from the above data
as

Mxy =
Count(xy)

Count(x)

where Count(xy) contains the number of transitions from
state X to state Y, while Count(x) contains the number of
occurrences of state X. To model the variability over time of
the effective CPU powered delivered by individual resources,
our simulator computes a new value (by means of Eq. 1
every 10 seconds of simulated time. The actual values for
the transition probabilities, that vary from one machine to
another, have not been reported because of space constraints
(the interested reader may refer to [20] for more details).

The fault time distribution of these machines have been also
estimated from a set of data collected in the same time period
by means of the Fault Time sensor of the NWS. As reported
in [21], the actual distribution is best approximated by the
Weibull function, whose parameters (shape and scale) have



Time(s)

o

Start Checkpoint event

x

Checkpoint saving

Checkpoint retrieving

(b)
t1Time(s)

x

x

o

kR0

Start Checkpoint event

(a)
t1

R1

R2

R3

CT0

CT1

CT2

CT3

CT0 CT1

CT2

R0

R1

Fig. 3. Wasted and useful CPU time

been computed using the Maximum Likelihood Estimation
(MLE) method [21]. The actual values for the Weibull param-
eters depend from the particular machine, and are not reported
here because of space constraints (the interested reader may
refer to [20] for more details). In all the experiments the
repair time (i.e. the time required to bring a machine back
to a functioning state) was instead set to 120 sec., the average
value computed from the above collected data.

The public-resource Desktop Grid scenario has been ob-
tained from the enterprise one as follows. First, in order
to introduce a larger machine heterogeneity, the nominal
computing power was assumed to be distributed according
to a Gaussian distribution with mean and standard deviation
equal to 10. Second, in order to represent a larger frequency
of machine failures, we set the parameters of the Weibull
distribution in such a way that the average fault time was
100 times smaller than the one measured for the enterprise
Desktop Grid.

2) Simulated workloads: In order to make an exhaustive
comparison, we considered a rather large set of workloads,
obtained by varying some parameters of a base workload. The
base workload consists in a sequence of Bag of Tasks, each one
comprising RR ·N tasks, where N is the number of machines
in the Grid, and RR represents the average number of tasks
for each Grid machine. For example, in our scenarios N = 85,
so when RR = 3 the BoT comprise 255 tasks. The duration
of each task is assumed to be a random variable uniformly
distributed in the interval [0.5 ∗BaseT ime, 1.5∗BaseT ime]
seconds, where BaseT ime is a workload parameters that
represents the mean execution time of a task submitted to a
machine with computing power P = 1. By suitably setting RR
and BaseT ime, very different workloads may be generated.
Due to space constraints, we present only the results obtained
when RR took values in the set {3, 5, 7, 10, 20, 50}, and
BaseT ime = 35000, thus generating 6 different workloads.
However, the results obtained for other values of the above
parameters do not significantly vary from those reported in
this paper.

During its computation, each replica performs its check-
points with a frequency computed according to the Young’s
formula [22] that approximates the optimum checkpoint inter-

val. In our study, we assume that the time taken to transfer a
checkpoint file to the server is 480 sec. (the value measured
for 500 MB files on the enterprise Desktop Grid network).
Finally, we performed experiments for various values of the
replication threshold (i.e. the maximum number of replicas
that the scheduler attempts to keep running for each task), but
we observed that using more than 2 replicas does not result
in significant performance improvements. Therefore, all the
experiments described in this section correspond to scenarios
in which the replication threshold was set to 2.

B. Results
Let us describe now the results obtained for the two Desktop

Grids discussed before. We performed a set of experiments
in which we progressively increased RR, and compared the
performance of our 8 scheduling policies among them and also
with respect to the WQR-FT scheduling algorithm. In all our
experiments, we computed 98% confidence intervals with a
relative error of 2.5% or less for the average BoT completion
time. For the sake of clarity of the figures, for each scenario we
report only the results obtained by the best blind and informed
scheduling policy.

1) The Enterprise Desktop Grid scenario: Fig. 5(a) reports
the results concerning the average BoT time, that has been
normalized w.r.t. WQR-FT, for values of RR ranging from
3 to 50. As can be seen by these results, the best scheduling
strategies are those that use LRET as task selection policy, that
obtain performance gains w.r.t. WQR-FT ranging from 10%
(for RR = 3) to about 1% (for RR = 50). This confirms
our intuition that starting the longest tasks first results in an
overall smaller BoT completion time. The reduction of the
relative performance benefits of LRET for increasing values
of RR is explained by the fact that, when the number of
tasks is much larger than the number of resources, knowledge-
free schedulers like WQR-FT are close to being optimal [2].
Another observation stemming out from our results is that the
machine selection policy has a negligible impact on perfor-
mance (the performance attained by LRET-FTD and LRET-
EffCPU-FTD are practically identical to those showed in the
figure). This is due to the fact that, being all the resource
similar and very reliable, the machine chosen for a given task



Fig. 5. Enterprise Desktop Grid: (a) Average BoT completion time, and (b) relative wasted time

by all scheduling policies is often the one that completes it
(so the other replicas are useless). In the infrequent cases in
which this machine fails, there is little advantage provided
by the availability of a better checkpoint, since a new replica
must wait 480 sec. (the time taken to transfer a checkpoint
file) before starting its execution. However, as will be shown
later, in scenarios characterized by higher heterogeneity and
failure rates, performance gains tend to be more evident.

Similar results can be observed also for the amount of
wasted CPU time, as shown in Fig. 5(b), where the gains
of LRET-based strategies w.r.t. WQR-FT are evident. To
understand why this happens, consider that at the beginning
of the execution of a BoT very few replicas are created, since
all the idle machines are used to run the first instance of each
task. Conversely, when most of the tasks have been completed,
the amount of replicas increases. With WQR-FT half of these
replicas (on average) correspond to longer tasks, that are more
prone to incur into a machine failure than shorter ones, with
the consequence that more resubmissions are generated w.r.t.
LRET-based strategies. It is interesting to observe also that
for increasing values of RR all the strategies waste less CPU
time. This depends on the fact that, when the number of tasks
grows, the probability to have an idle resource decreases, so
the scheduler cannot start many replicas.

2) The public-resource Desktop Grid scenario: The results
obtained for this scenario, characterized by a higher resource
heterogeneity and a lower availability, shows that – unlike the
previous case – the machine selection policy actually makes a
difference both in terms of performance (Fig. 6(a)) and wasted
CPU time (Fig. 6(b)). First of all, our results indicate again
that LRET is the best task selection policy both in terms of
performance and efficiency so, as mentioned before, the graphs
in the figures do not include the bars corresponding to SRET-
based policies.

Let us start by discussing the results concerning the average
BoT completion time, reported in Fig. 6(a) (showing the
average BoT completion time normalized w.r.t WQR-FT), that

indicate that the best informed machine selection policy is
EffCPU, that results in a reduction in the BoT completion
time ranging from from 18% for RR = 3 to 7% for RR = 10
and 3% for RR = 50. More precisely, LRET-FTD results
in performance worse than LRET-EffCPU, but better than
WQR-FT (from about 11% for RR = 3 to about 3% for
RR = 50), thanks to the fact that, by choosing the most
reliable machine the number of resubmissions decreases and
consequently also the probability than one replica may be
scheduled on a faster machine decreases. Conversely, the
performance attained by LRET-EffCPU-FTD are practically
identical, but LRET-EffCPU should be considered better since
it requires a smaller amount of knowledge. Furthermore, we
note that the Blind machine selection policy does not pay off,
as LRET-Blind constantly results in performance worse than
LRET-EffCPU.

Another interesting observation that can be made by com-
paring Fig. 6(a) with Fig. 5(a) is that even the Blind machine
selection policy provides better performance than plain WQR-
FT, as can be observed by the fact that the difference between
these two scheduling policies remains larger for larger values
of RR than in the Enterprise Desktop Grid scenario. This can
be explained by the fact that the large number of resubmis-
sions occurring in the public-resource Desktop Grid (due to
the lower resource availability) increases the probability of
submitting a task to a faster machine (since in this scenario
the computational power of the resource varies significantly).

Let us discuss the results concerning the CPU wasted time,
shown in Figure 6(b). From these results, the advantages of
using the LRET task selection policy in conjunction with
the EffCPUKnown machine selection policy clearly emerge.
However, in general all the strategies are less efficient than in
the Enterprise Desktop Grid scenario, as indicated by the fact
that now the wasted CPU time ranges from 21% to 30%, while
in the previous scenario it ranged between 2% and 18%. This
is not a surprise, however, since the lower availability implies
a larger number of task resubmissions, that in turn result in a



Fig. 6. Public-resource Desktop Grid: (a) Average BoT completion time; (b) Wasted CPU time

larger amount of wasted time.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed fault-aware scheduling, a
novel approach to scheduling Bag-of-Tasks applications on
Desktop Grids that, rather than just tolerating resource failures
and unplanned periods of unavailability, tries to avoid them
as much as possible by jointly exploiting the information
concerning tasks requirements and resource availability. We
have proposed 8 different scheduling policies and have evalu-
ated them, for a set of realistic scenarios and workloads, via
simulation. As shown by our results, fault-aware scheduling
results both in better application performance and resource
utilization than WQR-FT, the fault-tolerant scheduler that –
at the best of our knowledge – provides the best performance
among those of its class.

As indicated by our results, LRET-based policies are con-
stantly better than their SRET-based counterparts. As for the
machine selection policies, we have observed that for Desktop
Grids characterized by a relatively low heterogeneity and high
availability it practically does not matter which one is chosen,
while for Desktop Grids exhibiting dual properties EffCPU
results in better performance. Our results also indicate that
the knowledge of the fault-time distribution does not improve
the performance over machine selection policies exploiting
that concerning the effective computing power delivered by
resources. We believe, however, that the benefits of this type of
this information can be increased by better machine selection
policies, that we plan to investigate as part of our future work.
Furthermore, we plan to study the effects of other scheduling
mechanisms, such as dynamic replication threshold or the
usage of task-dependent replication thresholds. Finally, we
plan to carry out a more thorough experimentation, involving
workloads where multiple Bag-of-Tasks are simultaneously
submitted.

ACKNOWLEDGMENTS

This work has been supported by the Italian MIUR grant
no. RBNE01WEJT (FIRB ”WebMINDS” project) and by the
National Science Foundation grant no. NGS-0305390.

REFERENCES

[1] J. Nabrzyski, J. Schopf, and J. Eglarz, Grid Resource Management: State
of the Art and Future Trends. Kluwer Academic Publishers, 2003.

[2] D. Kondo, A. Chien, and H. Casanova, “Resource management for rapid
application turnaround on enterprise desktop grids,” in Proc. of Super
Computing Conference, 2004.

[3] W. Cirne and et al., “Grid computing for bag of tasks applications,” in
Proc. of 3

rd IFIP Conf. on E-Commerce, E-Business and E-Government,
2003.

[4] D. Paranhos, W. Cirne, and F. Brasileiro, “Trading cycles for in-
formation: Using replication to schedule bag-of-tasks applications on
computational grids,” in Proc. of the Euro-Par 2003: International
Conference on Parallel and Distributed Computing, 2003.

[5] F. Berman, R. Wolski, and et al., “Adaptive computing on the grid using
apples,” IEEE Trans. on Parallel and Distributed Systems, vol. 14, no. 4,
2004.

[6] H. Casanova, F. Berman, G. Obertelli, and R. Wolski, “The apples
parameter sweep template: User-level middleware for the grid,” in Proc.
of Supercomputing 2000, 2000.

[7] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman, “Heuristics
for scheduling parameter sweep applications in grid environments,”
Proceedings of the 9th Heterogeneous Computing Workshop, p. 349,
2000.

[8] D. Kondo, M. Taufer, C. Brooks, H. Casanova, and A. Chien, “Charac-
terizing and evaluating desktop grids: An empirical study,” in Proc. of
Int. Parallel and Distributed Symposium (IPDPS’04), 2004.

[9] J. Brevik, D. Nurmi, and R. Wolski, “Quantifying machine availability
in networked and desktop grid systemsr,” in Proc. of IEEE International
Symposium on Cluster Computing and the Grid (CCGrid 2004). IEEE
Press, 2004.

[10] J. Abawajy, “Fault-tolerant scheduling policy for grid computing sys-
tems,” in Proc. of 18th Int. Parallel and Distributed Processing Sympo-
sium, 2004.

[11] J. Weissman and D. Womack, “Fault tolerant scheduling in distributed
networks,” Department of Computer Science, University of Texas, San
Antonio, Tech. Rep. TR CS-96-10, September 1996.

[12] C. Anglano and M. Canonico, “Fault-tolerant scheduling for bag-of-task
grid applications,” in Proc. of European Grid Conference, EGC 2005,
2005.

[13] P. A. Dinda, “Online prediction of the running time of tasks,” in
SIGMETRICS/Performance, 2001, pp. 336–337.



[14] R. Wolski, N. T. Spring, and J. Hayes, “Predicting the CPU availability
of time-shared unix systems on the computational grid,” Cluster
Computing, vol. 3, no. 4, pp. 293–301, 2000. [Online]. Available:
citeseer.ist.psu.edu/wolski98predicting.html

[15] J. Brevik, D. Nurmi, and R. Wolski, “Automatic methods for predicting
machine availability in desktop grid and peer-to-peer systems,” in Proc.
of 4th Int. Workshop on Global and Peer-to-Peer Computing, 2004.

[16] A. Chien, B. Calder, S. Elbert, and K. Bhatia, “Entropia: architecture and
performance of an enterprise desktop grid system,” Journal of Parallel
and Distributed Computing, vol. 63, no. 5, pp. 597–610, 2003.

[17] B. Uk, M. Taufer, T. Stricker, G. Settanni, and A. Cavalli, “Implementa-
tion and characterization of protein folding on a desktop computational
grid - is charmm a suitable candidate for the united devices metapro-
cessor?” Institute for Comutersystems, ETH Zurich, Tech. Rep. 385,
2002.

[18] “The nbench project,” 2005, http://www.tux.org/ mayer/linux/bmark.html.
[19] R. Wolski, N. Spring, and J. Hayes, “The network weather service: a dis-

tributed resource performance forecasting service for metacomputing,”
Journal of the Future Generation Computer Systems, vol. 15, no. 5, pp.
757–768, 1999.

[20] M. Canonico, “Scheduling Algorithms for Bag-of-Tasks Applications
on Fault-Prone Desktop Grids,” Ph.D. dissertation, University of Turin,
2006.

[21] D. Nurmi, J. Brevik, and R. Wolski, “Modeling machine availability
in enterprise and wide-area distributed computing environments,” De-
partment of Computer Science, University of California, Santa Barbara,
Tech. Rep. CS2003-28, 2003.

[22] J. W. Young, “A first order approximation to the optimum checkpoint
interval,” Communications of the ACM, vol. 17, pp. 530–531, 1974.


