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Abstract

The ability of transferring very large files in the shortest
amount of time is crucial for data-intensive Grid appli-
cations. Experimental evidence has shown that the mere
availability of high-capacity wide-area networks is not
sufficient to obtain adequate performance if vanilla TCP
is used to transport data. Consequently, many alternative
solutions are being explored, and a variety of data transfer
tools have appeared. In this paper we experimentally
compare some of these tools in various network scenarios.
Our results show that solutions based on UDP, adopting
rate-based algorithms, result in better performance than
other alternatives in most cases, while solutions based on
TCP are effective only under specific circumstances.

Keywords: data-intensive Grid applications, file transfer
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1 Introduction

The scientific exploration in many disciplines, like High
Energy Physics, Climate Modeling, and Life Sciences, re-
quires the processing of massive data collections. For in-
stance, the amount of data that must be processed in many
High-Energy Physics experiments is in the order of Ter-
abytes (and sometimes even Petabytes) [5, 6, 7], while typ-
ical climate modeling applications generate output datasets
whose size is in the order of hundreds of Gigabytes [10].
For these applications, the creation of Data Grids[12], that
pool geographically distributed storage and computing re-
sources, seems a promising solution. In order to enable
the achievement of satisfactory performance, data-intensive
grid applications require the availability of a system able
to transfer potentially huge files in the shortest possible
amount of time [10]. As a matter of fact, the completion

time of typical data-intensive applications is given by the
sum of their execution time and of the time taken to transfer
the data they need [24], and is often dominated by the data
transfer time.

An apparently straightforward way to reduce data trans-
fer times is to increase the bandwidth of the networks in-
terconnecting the resources in a Grid. Recent advances in
communication technology are indeed enabling the deploy-
ment of Gigabit-per-second networks on geographic scale at
a reasonable cost, and a few testbeds of this type have been
already deployed. These networks, that are often called
high Bandwidth Delay Product (BDP) networks, are char-
acterized by very high round-trip latencies because of the
distances covered by their links. However, empirical and
analytical evidence exists demonstrating the intrinsic limi-
tations of the TCP protocol, the de-facto standard for Inter-
net transport, that has been shown to be unable to fully uti-
lize the available capacity provided by high BDP networks.
This is because TCP’s windowing mechanisms imposes a
limit on the amount of data it will send before it waits for
an acknowledgment. Thus, the typical delays of high BDP
networks imply that TCP will spend an inordinate amount
of time waiting for acknowledgments, which in turn means
that the client’s data transmission will never reach the avail-
able capacity of the network. Therefore, simply increas-
ing the available network bandwidth not necessarily trans-
lates into proportional improvements of data transfer per-
formance, unless optimized TCP versions are used. The tra-
ditional solution to this problem is to adjust TCP’s window
and buffer sizes to match the BDP of the network, but not al-
ways this operation can be performed by users with standard
privileges. For instance, in many Unix variants, the maxi-
mum buffer size is a system-wide value that can be modified
only by the superuser. In order to overcome these intrinsic
limitations of TCP, other approaches are being investigated,
and new data transfer techniques are consequently being de-
veloped. These techniques work either at the system level
or at the application-level. System level solutions, that usu-
ally require modifications to the operating system of the ma-
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chines, of the network equipment, or of both, include auto-
matic tuning of TCP window sizes [1], sometimes comple-
mented by other sophisticated mechanisms [8], and devel-
opment of new versions of TCP (e.g., Selective Acknowl-
edgment TCP [23], High Speed TCP [16], and Scalable
TCP [22]). This approach can yield very good performance,
but usually requires significant updates of the networking
infrastructure. Conversely, application level solutions do
not require any modification to the networking infrastruc-
ture, but attempt to circumvent TCP problems by exploiting
techniques not needing any special privilege. These tech-
niques are based either on TCP or UDP. TCP-based solu-
tions (e.g., GridFTP [26], bbFTP [4], and bbcp [19]) use
TCP connections to move data, and attempt to circumvent
TCP’s window size problems by using parallel streams, so
that an aggregate congestion window, matching the BDP
on the network path used to carry out the transfer, is ob-
tained. Conversely, UDP-based solutions (e.g., FOBS [14],
Tsunami [27], UDT [17], and SABUL [18], use UDP to
move data, and employ rate-based control algorithms to
match the transmission speed with the available network
bandwidth, sometimes coupled with congestion and flow
control algorithms in order to keep as low as possible the
loss rate during transmissions. for congestion control.

Given the relatively large number of high-performance
transfer tools, the question about the effectiveness of each
of them arises naturally. However, although prototypes of
many of the above systems have been around for a while,
an experimental comparison is still lacking in the literature.
To the best of our knowledge, the only study of this type
has been carried on Lambda-Grids [21], whose peculiarities
make the corresponding results inapplicable to more con-
ventional Grid networking infrastructures. This paper aims
at filling this gap by presenting the results we collected by
performing data transfer experiments, among machines of
the PlanetLab [13] testbed, using some of the above tools
that are, in our opinion, representative of their class. In our
investigations we tried to answer the following questions:

1. Are TCP-based and UDP-based solutions equivalent,
or one approach yields better performance than the
other one, when production networks are used?

2. Is there a data transfer tool that works better than the
other ones?

3. How do these tools work for production networks with
relatively low BDP values?

In the rest of this paper we will provide preliminary answers
to the above questions, using the results we collected. Our
results indicate that, while for relatively low BDP networks
both TCP-based and UDP-based approaches achieve similar
performance (although the latter ones are more effective),

for higher BDP networks UDP-based tools are definitely the
only viable option.

The rest of the paper is organized as follows. In Sec-
tion 2 we briefly describe the main characteristics of the
tools we compared. In Section 3 we discuss the experi-
mental methodology we used, report the results we got, and
highlight the differences among the various tools. Finally,
Section 4 concludes the paper and outlines future research
work.

2 File transfer tools

As anticipated in the Introduction, our study focuses
on application-level data transfer systems that do not re-
quire kernel modifications. To the best of our knowl-
edge, the exhaustive list of these systems is: FOBS [14],
Tsunami [27], SABUL [18], UDT [17], RBUDP [20],
GTP [28], GridFTP [26], bbcp [19], bbFTP [4], and
PSockets [25]. In our study, however, we considered only
a subset of the above tools, namely FOBS, UDT, RBUDP,
and bbFTP, for the following reasons. Tsunami seems to
be a very promising tool, but its current implementation suf-
fers from a bug [11] that makes it hang (and slow down
also other processes) from time to time, making it hard to
perform an extensive experimentation. UDT is the succes-
sor of SABUL, so it should exhibit higher performance,
while GTP is specific for Lambda Grids and focuses on
multipoint-to-point transfers. Among the TCP-based tools,
we selected bbFTP as representative of the whole class,
since we believe that all of them offer similar performance.
Furthermore, GridFTP requires the installation of various
Globus components, we did not have access to any PSock-
ets implementation, and bbcp posed us some problems in
using it through scripts, so these tools were not considered
in our evaluation. In the rest of this Section, we will de-
scribe in more detail the tools we compared.

2.1 bbFTP

bbFTP is a file transfer system, developed by the High-
Energy Physics community, that uses multiple TCP connec-
tions between the same endpoints to speed-up data trans-
fers. It uses several aggressive optimization techniques (like
on-the-fly data compression and automatic sizing of TCP
windows) to improve performance, and provides a set of
advanced functionalities concerning authentication and in-
terfacing with various I/O subsystems. We tested version
3.0.2, downloaded on Jan. 27th, 2004.

2.2 Reliable Blast UDP (RBUDP)

The Reliable Blast UDP system, a part of the Quality of
Service Adaptive Networking Toolkit (QUANTA) [3], be-
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longs to the family of UDP-based solution. With RBDUP,
hosts exchange data packets via UDP, and control packets
via TCP. More specifically, a transfer is carried out in the
following way. In the first data transmission phase, the
source machine sends the whole file, at a constant, user-
specified rate, to the machine requesting it. At the end of
this phase, the receiver sends back (via a TCP connection) a
list of lost packets, that are retransmitted again as a “blast”.
This process is repeated until no more packets need to be re-
transmitted. RBDUP requires the user to specify the rate at
which data are sent, and this rate is kept constant for the
whole transfer duration. RBUDP authors recommend to
specify a sending rate not larger than the bandwidth of the
bottleneck link of the path connecting the two hosts, that
must be determined prior to the transfer by using a suitable
tool like Iperf [2] (or its extended version app perf devel-
oped as part of RBUDP). We tested the version distributed
with QUANTA 0.3, downloaded on Feb. 18th, 2004.

2.3 FOBS

FOBS is a user-level, UDP-based data transfer mecha-
nisms in which, unlike RBUDP, there is some degree of
interaction between the sender and the receiver during the
transfer. More specifically, the sender works by transmit-
ting (as fast as possible) a batch of fixed size data packets,
that includes both unsent and retransmitted packets. Peri-
odically, the receiver sends acknowledgment packets to the
sender, containing a list of unreceived packets, that is used
by the sender to decide how many lost packets will be re-
sent in the the next batch. The version of FOBS used in
our experiments includes also a congestion control mecha-
nism [15] used to adjust the sender’s speed to the conditions
of the network. We tested the version downloaded on Jan.
12th, 2004.

2.4 UDP-based Data Transfer protocol (UDT)

The UDT protocol, the latest version of the Simple
Available Bandwidth Utilization Library (SABUL) [18],
uses UDP to transfer data between pairs of hosts, and com-
bines rate-based, window-based and delay-based control
mechanisms to deliver high throughput and low loss data
transmission. UDT implements slow start and AIMD con-
trol schemes for flow control (which makes it more TCP
friendly than the other rate-based schemes), and window-
based control for controlling the number of outstanding
packets in flight. UDT employs also rate adjustment based
on delay monitoring, providing improved performance over
classical AIMD schemes. More specifically, the sender cal-
culates the inter-packet time, which is updated by the rate-
control algorithm. Packets are sent out every inter-packet
time, but the number of outstanding packets cannot exceed

the threshold imposed by the window size, that in turn is dy-
namically adjusted to match the current network conditions.
The receiver reorders, if necessary, the packets it receives,
and uses selective acknowledgments, sent at a constant rate,
to request lost packets. We tested version 1.1, downloaded
on Jan. 12th, 2004.

3 Experimental evaluation

As anticipated in the Introduction, the goal of our study
was to compare the above tools from the perspective of a
user that has the need of transferring large files over produc-
tion networks. Therefore, in our evaluation we considered
only user-perceived performance indices, and in particular
the throughput achieved during the transfer, and not other
figures of merit that could give insights into the behavior of
each tool (e.g., fairness w.r.t. other traffic flows, fast adjust-
ment to network capacity, etc.).

3.1 Experimental setup

Our performance comparison has been carried out by de-
ploying the above tools on a set of machines belonging to
the PlanetLab testbed, and by running a set of transfer ex-
periments, spanning about two weeks, aimed at measuring
the throughput achieved by each tool.

In order to compare these tools in a variety of scenar-
ios, we used both machines connected by paths with a rela-
tively high BDP value (around 3.75 MBytes), and machines
connected by paths with lower BDP values (from 250 to
800KBytes). The characteristics of the testbed we used for
our experiments are reported in Table 1, where rows corre-
spond to “clients” (i.e., machines requesting the transfer of
files), columns correspond to “servers” (i.e., machines from
which the transfers start upon request from a client). For
each (client,server) pair, we report both the Round-Trip-
Time (RTT) and path capacity (C), that have been measured
by means of the pathrate [9] tool. The BDP for each pair is
computed as the product of the RTT and the path capacity.
Note that in Table 1 we use short names for the involved ma-
chines, in order to keep the table within the page margins.
The correspondence between short names and full names is
reported in Table 2.

All the machines used in the experiments had identical
configurations (they all run the PlanetLab software). In par-
ticular, the maximum read/write buffer size for TCP sock-
ets was set to 128KBytes. The only (notable) difference
among these machines is represented by the Taiwan host,
whose incoming and outgoing bandwidth is limited to 10
Mbit/sec., although this has not been detected by pathrate
that estimated a path capacity of about 100 Mbit/sec.
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Taiwan Atlanta Houston Montreal
RTT C RTT C RTT C RTT C

Ottawa 300 97 49 98 65 98 23 101
Atlanta 230 99 – – 20 100 49 100
Taiwan – – 229 97 233 95 243 96

Table 1. Performance characteristics of the
testbed used for experiments. Round-trip-
times (RTT) are expressed in milliseconds,
path capacities (C) in Mbit/sec.

Short name Full address
Montreal planet1.montreal.canet4.nodes.planet-lab.org
Ottawa planet1.ottawa.canet4.nodes.planet-lab.org
Atlanta planetlab1.atla.internet2.planet-lab.org
Houston planetlab1.hstn.internet2.planet-lab.org
Taiwan planetlab1.im.ntu.edu.tw

Table 2. Correspondence among short and
full names of machines used for the experi-
ments

3.2 Evaluation methodology

Our evaluation has been carried out by downloading
from each “client” machine a 100 MBytes file using each
of the tools we considered. Since the performance of tools
using parallel TCP streams strongly depend on the number
of TCP connections used to carry out the transfer, for bbFTP
we ran experiments using 5, 10 and 15 parallel streams.
Thus, from each client we performed six different down-
load experiments.

Performing a comparison based on measurements col-
lected on production networks is not an easy task, since the
presence and the variation of cross traffic may differently
affect the various tools, thus biasing the results. In order
to minimize these effects, we organized our experiments in
rounds. In a given round, we chose a client and performed
“back-to-back” all the six download experiments. More-
over, the relatively small size of the files used for the ex-
periments (100 MBytes) allowed us to keep the duration of
each download experiment within a few minutes in most
cases, so that an entire round could be completed in a rel-
atively short time. In this way, we tried to minimize the
probability of dramatic cross-traffic changes between the
downloads performed with different tools. We performed
a sequence of rounds, spanning about two weeks, during
which we collected the throughput achieved during the var-
ious transfers, and used these measurements to compute av-
erage values. In order to quantify the possible effects of

cross traffic flows, we computed also the standard devia-
tions of the measured values. Intuitively, higher standard
deviations indicate larger variations of cross traffic, while
smaller values indicate a relative stability of network condi-
tions across the various round we performed.

3.3 Experimental results

The results obtained for our experiments are reported
in Table 3, where each row corresponds to a particu-
lar (client,server) pair and reports the average throughput
value, and the respective standard deviation, for each of the
tools we considered. For each row, the tool that achieved the
best performance is highlighed by using bold fonts for the
corresponding throughput value. As shown by the results in
the table, the best tool for paths characterized by a relatively
small BDP value (from 250 to 800 KBytes), i.e. all the
paths that did not include Taiwan as endpoint, was either
RBUDP or UDT. More specifically, RBUDP provided bet-
ter results when the client was Atlanta (its throughput was
from 2% to 6% higher than those obtained by UDT), while
UDT achieved better performance when the client was Ot-
tawa (its throughput was from 8.9% to 16.2% higher). The
performance of bbFTP for these paths can be considered
quite good as well, although the lack of a monotonic trend
in the throughput values obtained for increasing numbers
of parallel streams reveals the intrinsic drawback of this
approach, namely the difficulty in choosing an appropriate
value for this parameter. For instance, the best performance
for the Atlanta client, downloading either from Ottawa or
from Montreal with bbFTP, were obtained with 10 par-
allel streams (bbFTP-10 column), while for the download
from Houston 5 streams were sufficient. Finally, the per-
formance of FOBS on lower BDP paths was quite disap-
pointing, as in these cases it achieved a throughput 8 or
9 times smaller than UDT, RBUDP, or bbFTP, showing
that UDP-based solutions that do not adopt a rate-based ap-
proach in order to match the transmission speed to the avail-
able network bandwidth, as instead done by RBUDP and
UDT, may fail to achieve adequate performance. The small
values for the standard deviations computed for these paths
indicate also that the results were not polluted by cross-
traffic variations.

For paths with larger BDP values (around 3.75 MBytes),
i.e. all the paths including Taiwan as endpoint, the situation
becomes a bit different. In particular, when Taiwan acted
as server, RBUDP and UDT showed very similar perfor-
mance, while the other tools obtained a smaller throughput,
but were more or less equivalent to each other. However,
when Taiwan was the client, the differences among the var-
ious tools became very evident. In particular, the best tool
was by far RBDUP that, with 25 Mbit/s., showed improve-
ments from 124% to 137% w.r.t. UDT, from 219% to 394%
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Hosts FOBS RBUDP UDT bbFTP-5 bbFTP-10 bbFTP-15
Client Server Avg St.Dev. Avg St.Dev. Avg St.Dev. Avg St.Dev. Avg St.Dev. Avg St.Dev.
Atlanta Taiwan 7.17 0.51 10.34 1.82 10.11 1.43 6.36 1.62 7.97 1 9.62 0.56
Atlanta Ottawa 8.82 0.81 86.25 3.63 81.03 3.06 79.48 2.97 79.70 3.29 76.98 3.15
Atlanta Montreal 9.66 0.2 86.71 1.64 82.31 2.86 72.59 0.52 86.04 0.14 72.56 4.08
Atlanta Houston 9.34 0.47 86.29 2.47 84.28 3.3 87.94 0.51 85.62 1.19 81.35 1.88
Ottawa Taiwan 7.24 0.42 10.58 0.98 9.98 1.64 4.98 1.36 8.23 1.03 9.34 0.92
Ottawa Atlanta 9.17 0.43 75.87 19.24 86.02 3.17 79.63 5.4 77.78 4.37 80.37 5.15
Ottawa Montreal 9.71 0.22 77.74 19.77 90.4 5.59 88.11 3.66 88.99 1.79 89.4 1.76
Ottawa Houston 9.27 0.4 76.15 19.13 82.96 4.49 81.35 5.11 76.43 5.69 73.85 3.66
Taiwan Ottawa 5.7 2.8 25.06 8.78 11.18 2.1 � 1 – 1.26 0.13 1.63 0.29
Taiwan Atlanta 7.1 2.56 22.36 9.28 11.17 1.85 � 1 – 1.3 0.14 1.78 0.22
Taiwan Montreal 6.48 2.98 25.29 6.93 10.65 2.98 �1 – 1.28 0.14 1.72 0.2
Taiwan Houston 7.18 2.48 21.73 8.71 10.06 1.87 �1 – 1.25 0.15 1.65 0.26

Table 3. Experimental results. Average throughputs are expressed in Mbit/s.

w.r.t. FOBS, and from 1156% to 1437% w.r.t. bbFTP. This
behavior might be due to the effects of the mechanisms used
by PlanetLab nodes to enforce bandwidth limitations. This
hypothesis seems to be supported by the fact that, not con-
sidering RBUDP, the throughput achieved by all the tools
does not exceed the bandwidth limit of 10 Mbit/sec. im-
posed on the Taiwan machine. These mechanisms seem to
be effective only for those tools that employ some form of
congestion control (in practice, all the tools but RBUDP),
while they appear ineffective for RBUDP that, as already
discussed, does not encompass any congestion control fea-
ture and hence might be able to unhinge them. As additional
evidence to this hypothesis, consider that for all the tools
the observed standard deviation was quite low, indicating
the stability of the network conditions across all the exper-
iments, while for RBDUP was considerably higher, possi-
bly indicating that sometimes the limiting mechanisms had
some effects also on RBUDP, but that in most cases they
were ineffective. However, additional experiments are re-
quired in order to better understand this behavior.

In summary, our results indicate that, while for relatively
low BDP networks both TCP-based and UDP-based ap-
proaches achieve similar performance (although the latter
ones are more effective), for higher BDP networks UDP-
based tools are definitely the only viable option. However,
simply using UDP does not automatically result in good
performance, as demonstrated by FOBS that, not using any
rate-based mechanism, was not able to achieve performance
comparable with those attained by the other UDP-based
tools. As a final consideration, we note that using UDT is
definitely simpler than using RBUDP, as it does not require
the user to perform any estimation of the available band-
width on the network path connecting the hosts involved in
the transfer.

4 Conclusions and future work

In this paper we presented a comparison of available
high-performance data transfer tools for data-intensive Grid
applications. Although these tools have been developed for
very high BDP networks, and hence when used on rela-
tively low BDP networks may show unexpected and un-
planned behaviors, we believe that our comparison makes
sense from a practical point of view. We indeed believe
that the vast majority of Grid users will not have access to
very high-speed networking infrastructures, so a compari-
son of available high-performance transfer tools on produc-
tion networks may provide them with valuable information.

The results presented in this paper, however, must be
considered preliminary. A more thorough experimentation,
aimed at better characterizing the behavior of the various
tools and at comparing their performance, is indeed planned
for the near future. In this experimentation, we plan to use
larger files (from 500MBytes to a few GBytes). However,
this requires the development of suitable measurement tech-
niques able to factor out the possible effects of cross-traffic
variations that almost certainly will arise for long-lasting
transfers. Moreover, we plan to include more machines in
our testbed, in order to be able to draw more general con-
clusions about the performance of the various tools. Finally,
we plan to perform data transfer experiments on network
paths exhibiting very large BDP values, much larger than
those currently characterizing PlanetLab, although finding
and accessing these testbeds appears, at the moment, chal-
lenging.
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